Paradoxical effect of the antipsychotic drug sulpiride in the ventral pallidum: impairs learning and induces place preference.

Author:

Dusa Daniella1,Ollmann Tamas1,Kallai Veronika1,Lenard Laszlo1,Kertes Erika1,Berta Beata1,Szabo Adam1,Laszlo Kristof1,Galosi Rita1,Zagoracz Olga1,Karadi Zoltan1,Peczely Laszlo1

Affiliation:

1. University of Pecs

Abstract

Abstract Sulpiride, as a D2-like dopamine (DA) receptor (D2R) antagonist, is an important antipsychotic drug in the treatment of schizophrenia. Recently, we have shown that the activation of D2Rs in the ventral pallidum (VP) modulates the activity of the ventral tegmental area (VTA) DAergic neurons. According to our hypothesis, intra-VP sulpiride can influence the motivational and learning processes, pervasively modifying the behavior of examined animals. In the present study, sulpiride was microinjected into the VP of male Wistar rats in three different doses. Morris water maze (MWM) test was applied to investigate the effects of sulpiride on spatial learning, while conditioned place preference (CPP) test was used to examine the potential rewarding effect of the drug. In order to show, whether the animals can associate the rewarding effect with an area which can be recognized only on its spatial location, we introduced a modified version of the CPP paradigm, the spatial CPP test. Our results show that the intra-VP sulpiride dose-dependently impairs learning processes. However, the largest dose of sulpiride induces place preference. Results of the spatial CPP paradigm demonstrate that the animals cannot associate the rewarding effect of the drug with the conditioning area based on its spatial location. In the CPP paradigm, likely faster habituation with the conditioning environment could be observed in the sulpiride-treated rats. In summary, we can conclude that intra-VP sulpiride has a dual effect: it diminishes the hippocampus-dependent spatial learning processes, in addition, it has a dose-dependent rewarding effect.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3