Hybrid Intelligent Model to provide valuable insights and information for Decision-making in the Early Stages of Projects Portfolio. (Case Study: Automotive Industry)

Author:

Faridnia Rashid1ORCID

Affiliation:

1. IRAN KHDRO CO

Abstract

Abstract

This study proposes a novel approach for intelligent decision-making in automotive platform-based projects by integrating advanced techniques such as Long Short-Term Memory (LSTM) for time series forecasting, Genetic Algorithms for portfolio optimization, and Multi-Objective Optimization for balancing conflicting objectives. The use of LSTM enables accurate prediction of future trends in automotive platform performance metrics, while Genetic Algorithms efficiently search for the optimal portfolio composition that maximizes returns and minimizes costs. By incorporating Multi-Objective Optimization, decision-makers can explore trade-offs between multiple objectives such as maximizing returns, minimizing costs, and ensuring diversification. The proposed framework offers a comprehensive solution for optimizing automotive platform portfolios and facilitating strategic decision-making in the automotive industry projects.

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Evans, D. S. (2017). The Rise of the Platform Enterprise: A Global Survey. University of Chicago, Becker Friedman Institute for Research in Economics.

2. Hagiu, A., & Wright, J. (2015). Multi-sided platforms. International Journal of Industrial Organization, 43, 162–174.

3. Hagiu, A. (2014). Strategic Decisions for Multisided Platforms. MIT Press.

4. Parker, G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform Revolution: How Networked Markets are Transforming the Economy and How to Make Them Work for You. W. W. Norton & Company.

5. Teece, D. J. (2018). Dynamic Capabilities and Strategic Management: Organizing for Innovation and Growth. Oxford University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3