On the stability & phase locking to a system reference of an optoelectronic oscillator with large delay

Author:

Hasan Mehedi1,Nicholls Charles2,Hall Trevor1

Affiliation:

1. University of Ottawa

2. Nanowave Technologies Inc

Abstract

Abstract Delay line oscillators based on photonic components, offer the potential for realization of phase noise levels up to 3 orders of magnitude lower than achievable by conventional microwave sources. Fibreoptic-based delay lines can realize the large delay required for low phase noise systems whilst simultaneously achieving insertion loss levels that can be compensated with available microwave and photonic amplification technologies. Multimode operation is an artefact of the delay line oscillator and introduces modulational instability into phase-locked control loops. An optoelectronic oscillator (OEO) with large delay under proportional integral control by a phase-locked loop (PLL) is modelled, providing the first report of the location of all the infinity of poles of the PLL-OEO system function. The first experimental observation of giant phase modulated oscillation of a free OEO and spontaneous giant phase modulated oscillation of a PLL-OEO are also reported and explained respectively as a source and manifestation of modulational instability. Nevertheless, the analysis and experimental observations, including a prototype 10 GHz PLL-OEO phase noise spectral density achieving −𝟖𝟎 𝒅𝑩𝒄⁄𝑯𝒛 𝐚𝐭 𝟏𝟎 𝑯𝒛 and −𝟏𝟒𝟓 𝒅𝑩𝒄⁄𝑯𝒛 𝐚𝐭 𝟏𝟎 𝒌𝑯𝒛, demonstrate that stable phase lock operation and optimum phase noise performance is achievable provided full account of the multimode nature of the OEO is taken in the phase lock analysis.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3