Effect of alternative fuels on the emissions of a passenger car under real-world driving conditions: A comparison of biodiesel, gas-to-liquid, coal to liquid

Author:

Zhang Yunhua1ORCID,Zheng Sen1,Lou Diming1,Tan Piqiang1,Hu Zhiyuan1,Fang Liang1

Affiliation:

1. Tongji University School of Automotive Studies

Abstract

Abstract

Fossil fuel energy crisis and environmental pollution have initiated the scientific research on alternative fuels. Biodiesel (B100), gas to liquid (G100) and coal to liquid (C100) are superb selections to be substitutes for conventional diesel. To better investigate the emission characteristics of the alternative fuels mentioned above, a portable emission measurement system (PEMS) was used to carry out this study under real-world driving conditions. Results showed that the driving conditions had a notable effect on the vehicle emissions, the CO, THC and CO2 emissions were higher under urban condition and the NOx, PM (particle mass) and PN (particle number) emissions were higher under suburban condition. The expressway condition resulted in lower emissions except for PN due to more nucleation particles emitted. The use of B100, G100 and C100 fuels led to a reduction of more than 50% in the CO emission, especially for the C100, but the reduction effects for the THC were not obvious, and among them, G100 is the most prominent. Higher NOx emission was emitted after using the three fuels, especially for the B100, meanwhile, B100 increased the CO2, but G100 and C100 decreased the CO2 emission compared with D100. The PN emissions reduced by 1–2 orders of magnitude in comparison with those from D100 after using the three alternative fuels, and more than 50% of the PM could be reduced. B100 has the most significant particle reduction effect due to its oxygen-containing property, and it produced an evidently higher proportion of nucleation particles than D100, followed by G100 and C100.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3