The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species

Author:

Saville Barry J.1,Kennedy Victoria1,Kaszecki Emma1,Donaldson Michael E.1

Affiliation:

1. Trent University

Abstract

Abstract Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3