Affiliation:
1. University of Toronto
2. CorWave
3. St Michael's Hospital
4. Sunnybrook Health Sciences Centre
Abstract
Abstract
Although coronary artery bypass graft (CABG) surgery is a well-established intervention, graft failure can occur, and the underlying mechanisms remain incompletely understood. The purpose of this prospective study is to utilize computational fluid dynamics (CFD) to investigate how graft hemodynamics one month post surgery may vary among graft types, which have different long-term patency rates. Twenty-four grafts from 10 participants (64.6 ± 8.5 years, 9 men) were scanned with coronary CT angiography and 4D flow MRI one month after CABG surgery. Grafts included 10 left internal mammary arteries (LIMA), 3 radial arteries (RA), and 11 saphenous vein grafts (SVG). Image-guided CFD was used to quantify blood flow rate and wall area exposed to abnormal wall shear stress (WSS). Arterial grafts had a lower abnormal WSS area than venous grafts (17.9% vs. 70.1%; p = 0.001), and a similar trend was observed for LIMA vs. SVG (13.8% vs. 70.1%; p = 0.001). Abnormal WSS area correlated positively to lumen diameter (p < 0.001) and negatively to flow rate (p = 0.001). This CFD study is the first of its kind to prospectively reveal differences in abnormal WSS area 1 month post surgery among CABG types, suggesting that WSS may influence the differential long-term graft failure rates observed among these groups.
Publisher
Research Square Platform LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献