Chatter Stability Analysis and Prediction for Elliptical Ultrasonic Vibration-assisted Milling Process

Author:

Li Zhongqun1ORCID,Yang Shangzhen,Liu Qiang,Liu Hong,Liu Yang

Affiliation:

1. Hunan University of Technology

Abstract

Abstract Elliptical ultrasonic vibration-assisted milling (EUVAM) introduces ultrasonic frequency vibration into conventional milling (CM) to achieve high-frequency intermittent milling. It has broad application prospects in processing of difficult-to-cut materials such as titanium alloys, superalloys, carbon fiber reinforced plastic (CFRP), and hard and brittle materials. This study focuses on the development of a dynamic model for EUVAM that considers regenerative effects and analyzes the interaction between the cutting edge and the workpiece in both radial and tangential directions, and the dynamic chip thickness is derived based on this model. To solve the model, a Runge-Kuta based fully discrete method (RKFDM) is employed. This numerical method accurately predicts the stability of the EUVAM process under specified cutting conditions. In addition, a bisection algorithm is utilized to construct the stability lobe diagram of EUVAM, enhancing the computational efficiency of the process. Stability tests are conducted to validate the proposed stability model and solution method for EUVAM. The results of these tests confirm the accuracy and reliability of the approach presented in this paper. This study provides valuable insights and a practical framework for implementing EUVAM in the processing of difficult-to-cut materials, offering improved machining performance in various industrial applications.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3