Linking viscosity to equations of state using residual entropy scaling theory

Author:

Yang Xiaoxian1,Xiao Xiong2,Thol Monika3,Richter Markus1,Bell Ian H.4

Affiliation:

1. Chemnitz University of Technology

2. University of Western Australia

3. Ruhr University Bochum

4. National Institute of Standards and Technology

Abstract

Abstract In our previous work (J. Chem. Eng. Data 2021, 66, 3, 1385–1398), a residual entropy scaling (RES) approach was developed to link viscosity to residual entropy (a thermodynamic property calculated with an equation of state, EoS) using a simple polynomial equation for refrigerants. Here, we present an extension of this approach to a much wider range of fluids: all pure fluids and their mixtures whose reference EoS and experimental viscosity data are available. A total of 84877 experimental points for 124 pure fluids and 351 mixtures are collected from 1846 references. The investigated pure fluids contain a wide variety of fluids from light gases with quantum effects at low temperatures to dense fluids and fluids with strong intermolecular association. More than 68.2% (corresponding to the standard deviation) of the evaluated experimental data agree with the RES model within 3.2% and 8.0% for pure fluids and mixtures, respectively. Compared to the recommended models implemented in the REFPROP 10.0 software (the state-of-the-art for thermophysical property calculation), if the dilute gas viscosity is calculated in the same way, our RES approach yields similar statistical agreement with the experimental data while having a much simpler formulation and fewer parameters. To use our RES model, a software package written in Python is provided in the supporting information.

Publisher

Research Square Platform LLC

Reference74 articles.

1. E. W. Lemmon, I. H. Bell, M. L. Huber, and M. O. McLinden, (2018).

2. R. Span, R. Beckmüller, S. Hielscher, A. Jäger, E. Mickoleit, T. Neumann, and S. Pohl, (2020).

3. I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, Ind. Eng. Chem. Res. 53, 2498 (2014).

4. R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000).

5. W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3