Affiliation:
1. Cihan University- Erbil
2. Chouaïb Doukkali University
Abstract
Abstract
The impact of atmospheric turbulence on the properties of a Generalized Hermite cosh-Gaussian beam (GHCGB) is investigated. The formula for the average intensity of the propagated GHCGB in turbulent atmosphere is derived using the extended Huygens-Fresnel integral diffraction and Rytov method. Some graphical representations have examined to study the influences of turbulent atmosphere and incident beam parameters on the average intensity of the considered beam. Results show that the average intensity strongly depends on the structure constant of the turbulent atmosphere and the incident beam parameters such as the Gaussian waist width, the decentered cosh parameter and the beam orders. It’s shown that the initial profile of the beam remains unchanged within shorter propagation distance and spreads more rapidly on a Gaussian like distribution for the lager strong turbulent and the smaller beam parameters, but the reverse behavior will formed on a dark hollow distribution as the incident beam parameters are large. The paper results are useful for the atmospheric optics applications in remote sensing and free-space optical communications.
Publisher
Research Square Platform LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献