DrCSE: A New Framework For Software Vulnerability Detection base on An Advanced Computing

Author:

Cong Bui1,Xuan Cho Do2

Affiliation:

1. University of Economics and Technical Industries

2. Posts and Telecommunications Institute of Technology Hanoi

Abstract

Abstract The detection of software vulnerabilities written in C and C++ languages takes a lot of attention and interest today. This paper proposes a new framework called DrCSE to improve software vulnerability detection. It uses an intelligent computation tech-nique based on the combination of two methods: rebalancing data and representation learning to analyze and evaluate the code property graph (CPG) of the source code for detecting abnormal behavior of software vulnerabilities. To do that, DrCSE performs a combination of 3 main processing techniques: i) building the source code feature profiles, ii) rebalancing data, and iii) contrastive learning. In which, the method i) extracts the source code’s features based on the vertices and edges of the CPG. The method of rebalancing data has the function of supporting the training process by balancing the experimental dataset. Finally, contrastive learning techniques learn the important features of the source code by finding and pulling similar ones together while pushing the outliers away. The experiment part of this paper demonstrates the superiority of the DrCSE Framework for detecting source code security vulnerabil-ities using the Verum dataset. As a result, the method proposed in the article has brought a pretty good performance in all metrics, especially the Precision and Recall scores of 39.35% and 69.07%, respectively, proving the efficiency of the DrCSE Framework. It performs better than other approaches, with a 5% boost in Precision and a 5% boost in Recall. Overall, this is considered the best research result for the software vulnerability detection problem using the Verum dataset according to our survey to date

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3