NCANet: Integrating Normalized Channel Attention for Enhanced Lightweight Image Classification

Author:

Chentao Qian1,Liu Bailin1

Affiliation:

1. Xi'an Technological University

Abstract

Abstract

Deep convolutional neural networks (CNN) have demonstrated remarkable success in various applications.However, deploying these models on mobile or embedded devices is challenging due to constraints such as limited memory, computational resources, and low classification accuracy.We propose a novel design, NCANet (Normalized Channel Attention Network),an enhancedversion of MobileNetV3-large, to address challenges in feature representation within lightweight neural networks.First, the normalized channel attention mechanism is added to adjust the image-feature channel weights so as to improve the recognition accuracy of the model.Second, the MetaACON activation function is introduced, replacing the ReLU activation function to further enhance performance.Third, to minimize computational costs and the number of parameters, we utilize asymmetric 1×5 and 5×1 convolutions to replace the traditional 5×5 convolution. The experimental results on CIFAR-10, CIFAR-100 and ImageNet datasets achieve the highest accuracy 93.24%, 80.12% and 77.9%, respectively.This demonstrates that NCANet exhibits greater efficiency compared to lightweight models and significantly outperforms state-of-the-art networks with lower complexity.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3