Cheese whey permeate as a precursor of lactose-free, galactose-rich bioproducts: an approach for optimization and application

Author:

Flores Viviana K. Rivera1,DeMarsh Timothy A.1,Fan Xingrui1,Alcaine Samuel D.1

Affiliation:

1. Cornell University

Abstract

Abstract Under specific conditions, the fermentation of whey permeate (WP) by Brettanomyces claussenii can create bioproducts with high galactose concentrations and potential functionalities. The aims of this research are to optimize the fermentation of WP by B. claussenii using response surface methodology to maximize the production of ethanol and galactose, and to characterize various products obtained with this approach. For this purpose, five fermentation factors were studied to determine their impacts on ethanol and galactose: temperature (20 - 40°C), substrate concentration (5 - 15%TS), lactase enzyme/substrate ratio (0 - 40 IU/ g lactose), inoculation level (6 - 8 log cfu/mL), and time (6 - 30 days). Linear models, containing quadratic and interaction effects, were built for the optimization of both responses. Optimal levels were predicted for the maximum obtainment of ethanol and galactose simultaneously, which utilized the following parameters: 15%TS, 37 IU / g lactose, 28°C, 7.5 log cfu/mL, and 30 days, which together were predicted to produce 4.0%v/v ethanol and 51 g/L galactose in the final product. These parameters were then applied to 18-L fermentations, and the resulting fermentates were processed via distillation and freeze-drying. As a result, four product streams were obtained: a fermented product with 3.4%v/v ethanol and 56 g/L galactose; a 45%v/v ethanol distillate; a galactose-rich drink base (63 g/L); and a galactose-rich powder (55%w/w). These results demonstrate that it is possible to maximize the production of ethanol and galactose from the fermentation of WP and to design manufacturing processes based on these optimization models, to develop novel, potentially functional bioproducts from this stream.

Publisher

Research Square Platform LLC

Reference47 articles.

1. Belitz, H.-D. (2009). Food Chemistry (W. Grosch & P. Schieberle, Eds. 4th. ed.). Springer. https://doi.org/10.1007/978-3-540-69934-7

2. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model;Blomberg A;FEMS Microbiol. Lett.,2000

3. Optimization of the Bioethanol Production on Sweet Cheese Whey by Saccharomyces cerevisiae DIV13-Z087C0VS using Response Surface Methodology (RSM);Boudjema K;Rom. Biotechnol. Lett.,2015

4. Box, G., & Draper, N. (1987). Chapter 2: The Use Of Graduating Functions. In Empirical Model-Building and Response Surfaces (pp. 20, 21). John Wiley & Sons.

5. Studies on Some Growth Factors of Yeasts;Burkholder PR;J. Bacteriol.,1944

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3