Modeling Network Traffic Generators for Cyber Ranges: A Systematic Literature Review

Author:

Bistene Jonas Vasconcelos1,Chagas Clayton Escouper das1,Santos Anderson Fernandes Pereira dos1,Salles Ronaldo Moreira1

Affiliation:

1. Military Institute of Engineering

Abstract

Abstract Cyber ranges have evolved into indispensable environments for training personnel in the field of cyber defense. A critical aspect of enhancing the authenticity of these simulations involves the use of traffic generators, which accurately replicate real network traffic patterns. This article delves into the paramount role played by traffic generators within cyber ranges, highlighting their pivotal contribution to equipping personnel with the skills needed to respond adeptly to cyber threats. To address the modeling and validation of traffic generators comprehensively, it is essential to consider diverse approaches in cyber range training. To shed light on this subject, this review adopts a modified Scopus-based search methodology, providing in-depth insights into the methodologies and validation methods associated with traffic generator modeling and validation. The analysis concluded that the traffic generators used for computer network security training purposes can be broadly categorized into three main methodologies: model-based, trace-based, and hybrid approaches. Each of these methodologies has its own set of applications, limitations, and advantages. These factors have a direct influence on the validation parameters associated with these methodologies.

Publisher

Research Square Platform LLC

Reference66 articles.

1. Javali,C.&Revadigar,G.Network Web Traffic Generator for Cyber Range Exercises,308–315(2019).ISSN:0742–1303.

2. Anande,T. J.&Leeson,M. S.Generativeadversarialnetworks(gans):Asurveyonnetworktrafficgeneration.InternationalJournalofMachineLearningandComputing(2022).URLhttps://api.semanticscholar.org/CorpusID:253339791

3. Kieweg,M.,Bender,T.&Stiemerling,M.Bajpai,V.,Haddadi,H.&Hohlfeld,O.(eds)Fantastictrafficmodelsandwheretofindthem-Aliteraturereview.(edsBajpai,V.,Haddadi,H.&Hohlfeld,O.)5thNetworkTrafficMeasurementandAnalysisConference,TMA2021,VirtualEvent,September14–15,2021(IFIP,2021).URLhttp://dl.ifip.org/db/conf/tma/tma2021/tma2021-paper5.pdf.

4. Adeleke,O. A.,Bastin,N.&Gurkan,D.Networktrafficgeneration:Asurveyandmethodology.ACMComput.Surv.55(2022).URLhttps://doi.org/10.1145/3488375.

5. Mour˜ao,E.etal.Ontheperformanceofhybridsearchstrategiesforsystematicliteraturereviewsinsoftwareengineering.InformationandSoftwareTechnology123,106294(2020).URLhttps://www.sciencedirect.com/science/article/pii/S0950584920300446.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3