Evaluating Satellite-based multilinear regression and gauge- based spatial interpolation techniques for Köppen-Geiger classification in a national scale

Author:

Tayebi Asieh1,Mokhtari Mohammad Hossein1,Deilami Kaveh2

Affiliation:

1. Yazd University

2. RMIT University

Abstract

Abstract Empirical climate classification is a process that makes environmental conditions understandable to humans by using climatic elements. Köppen-Geiger (KG) is a popular climate classification method that uses long-term precipitation and temperature data to classify climate into five primary groups. However, long-term continuous meteorological data is heavily exposed to data scarcity, particularly in a national scale. This research study addresses this challenge by leveraging satellite imageries, multilinear regression models and spatial interpolation within the context of entire country of Iran between 2016 and 2019. Accordingly, this study examined statistical relationship between 14 explanatory variables under four main categories of MODIS-LST, MODIS-NDVI, MODIS-TVDI, GPM-precipitation and SRTM-DEM against ground-based precipitation and temperature data (dependent variables). The spatial interpolation model (i.e. Krigging and CO-krigging) was directly developed from weather observation station datasets. A total of 332 synoptic stations were selected, 67% of which were used in modeling and the remaining 33% in testing. Accuracy assessment was performed with Kappa statistics. Overall, this research study developed three KG classification maps. These include a map per precipitation and temperature from regression model and spatial interpolation and a point-based maps from unused climate data in modelling. This study identified three KG main climate groups of arid, warm temperate and snow and eight KG sub-groups of hot desert, cold steppe, cold desert, hot steppe, warm temperate climate with dry hot summer, Snow climate with dry hot summer, Warm temperate climate with dry warm summer and Snow climate with dry warm summer. A comparison between those maps (kappa = 0.75) showed the higher accuracy of regression-based KG maps against spatial interpolation maps. This study contributes to a more detailed monitor of climate change across countries and regions with sparse distribution of weather observation data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3