RC-Columns Subjected to Lateral Cyclic Force with Different FRCM-Strengthening Schemes: Experimental and Numerical Investigation

Author:

John Shaise K1ORCID,Cascardi Alessio2,Verre Salvatore3,Nadir Yashida1

Affiliation:

1. College of Engineering Trivandrum Department of Civil Engineering

2. University of Calabria Department of Civil Engineering: Universita della Calabria Dipartimento di Ingegneria Civile

3. Università degli Studi eCampus: Universita degli Studi eCampus

Abstract

Abstract The vulnerability of reinforced concrete (RC) structures against seismic events has prompted extensive research into retrofitting techniques aimed at enhancing their seismic performance. Among these, Fabric-Reinforced Cementitious Matrix (FRCM) systems have gained prominence as promising solutions for strengthening RC-columns. This study presents a comprehensive investigation into the seismic strengthening of RC columns using FRCM, combining experimental and numerical approaches to assess their effectiveness. The experimental phase of this research involved the fabrication of scaled RC-column specimens representing typical real-world conditions. These columns were subjected to a series of cyclic loading tests to simulate seismic forces. Multiple FRCM configurations, including different fiber types and dosages, were applied to these specimens. The experimental results revealed a substantial increase in the ductility, stiffness, and ultimate strength of the strengthened RC-columns, indicating the potential of FRCM systems as effective seismic retrofit solutions. In parallel, a numerical analysis was conducted using finite element modeling (FEM) to simulate the behavior of the strengthened RC-columns under seismic loading conditions. The FEM simulations were validated against the experimental data, demonstrating good agreement. This numerical investigation allowed for a more in-depth understanding of the stress distribution and deformation patterns within the strengthened columns, aiding in the optimization of FRCM reinforcement strategies. The integrated experimental and numerical investigation presented in this study contributes valuable insights into the seismic strengthening of RC-columns using FRCM systems. It provides a holistic understanding of their performance, including their enhanced load-carrying capacity, as well as improved ductility guiding the adoption of FRCM systems as a viable solution for mitigating seismic risk in existing RC-structures.

Publisher

Research Square Platform LLC

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3