Cytological and genetic effects of rye chromosomes 1RS and 3R on the wheat-breeding founder parent Chuanmai 42 from southwestern China

Author:

Wan Hongshen1,Yang Manyu1,Li Jun1,Wang Qin1,Liu Zehou1,Zheng Jianmin1,Li Shizhao1,Yang Ning1,Yang Wuyun1ORCID

Affiliation:

1. Sichuan Academy of Agricultural Sciences

Abstract

Abstract Rye (Secale cereale L.) is an important genetic resource for improving the disease resistance of wheat. An increasing number of rye chromosome segments have been transferred into modern wheat cultivars via chromatin insertions. In this study, 185 recombinant inbred lines (RILs) derived from a cross between a common wheat accession containing rye chromosomes 1RS and 3R and a wheat-breeding founder parent (Chuanmai 42) from southwestern China were used to decipher the cytological and genetic effects of 1RS and 3R via fluorescence/genomic in situ hybridization and quantitative trait locus (QTL) analyses. Chromosome breakage was detected in the RIL population. Additionally, the recombination of chromosomes 1BS and 3D from Chuanmai 42 was completely suppressed by 1RS and 3R in the RIL population. In contrast to chromosome 3D of Chuanmai 42, rye chromosome 3R was significantly associated with white seed coats and decreased yield-related traits, as revealed by QTL and single marker analyses, whereas it had no effect on stripe rust resistance. Rye chromosome 1RS did not affect yield-related traits and it increased the susceptibility of plants to stripe rust. Most of the detected QTLs that positively affected yield-related traits were from Chuanmai 42. The findings of this study suggest that the negative effects of rye-wheat substitutions or translocations, including the suppression of the pyramiding of favorable QTLs on paired wheat chromosomes from different parents and the transfer of disadvantageous alleles to filial generations, should be considered when selecting germplasm to enhance wheat-breeding founder parents or to breed new varieties.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3