Total protein of Candida species inhibits human cervical cancer HeLa cells proliferation by down-regulating octamer binding transcription factor 4B

Author:

Kokhdan Esmaeel Panahi1,Ataeyan Mohammad Hasan2,Rameyan Payman2,Alizadeh Fahimeh2,Khodavandi Alireza2

Affiliation:

1. Yasuj University of Medical Sciences

2. Islamic Azad University

Abstract

Abstract Cervical cancer is the fourth most common cause of cancer-related death among women globally. Microbial products represent an available source of anticancer drugs. Thus, this study aimed to extract the total protein from Candidaspecies (CanSp) and subsequently investigate its inhibitory effects against human cervical cancer HeLa cells. This study reports the five total protein of the yeast-to-hyphal transition culture of Candida species, which were then evaluated for their inhibitory potential by cell viability, cell apoptosis and nitrite assays against HeLa cells. Furthermore, transcriptional profile of OCT4B gene was determined using quantitative reverse transcription PCR. Total protein of CanSp1-5 were obtained from Candida species. The result of the protein quantitation assay indicated that the CanSp1-5 exhibited total protein values from 93.72 to 155.25 µg/mL and 89.88 to 144.33 µg/mL by Bradford and micro-Kjeldahl methods, respectively. The CanSp1 was most active with a half-maximal inhibitory concentration of 157.11 ± 0.001 μg/mL and half-maximal effective concentration of 102 ± 0.001 μg/mL. The distinct morphological changes of cells were showed a typical apoptosis. Moreover, a reduction in the nitric oxide concentration was observed in the HeLa cells. The expression level of OCT4B gene was significantly down regulated in the HeLa cells treated with CanSp1-5. These findings highlight the importance of investigating microbial products for the accelerated development new anticancer drugs. In addition, OCT4B gene could be probable molecular target of the CanSp1-5 in the HeLa cells.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3