Annotation of Trauma-related Linguistic Features in Psychiatric Electronic Health Records for Machine Learning Applications

Author:

Holderness Eben1,Atwood Bruce2,Verhagen Marc1,Shinn Ann2,Cawkwell Philip3,Pustejovsky James1,Hall Mei-Hua4

Affiliation:

1. Brandeis University

2. McLean Hospital

3. Bay Area Clinical Associates

4. Harvard Medical School

Abstract

Abstract Psychiatric electronic health records (EHRs) present a distinctive challenge in the domain of ML owing to their unstructured nature, with a high degree of complexity and variability. This study aimed to identify a cohort of patients with diagnoses of a psychotic disorder and posttraumatic stress disorder (PTSD), develop clinically-informed guidelines for annotating these health records for instances of traumatic events to create a gold standard publicly available dataset, and demonstrate that the data gathered using this annotation scheme is suitable for training a machine learning (ML) model to identify these indicators of trauma in unseen health records. We created a representative corpus of 101 EHRs (222,033 tokens) from a centralized database and a detailed annotation scheme for annotating information relevant to traumatic events in the clinical narratives. A team of clinical experts annotated the dataset and updated the annotation guidelines in collaboration with computational linguistic specialists. Inter-annotator agreement was high (0.688 for span tags, 0.589 for relations, and 0.874 for tag attributes). We characterize the major points relating to the annotation process of psychiatric EHRs. Additionally, high-performing baseline span labeling and relation extraction ML models were developed to demonstrate practical viability of the gold standard corpus for ML applications.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3