Numerical Analysis Of Dynamic Coupling Between The Keyhole And Molten Pool In The Rotating Laser Welding Process Of Aluminum Alloy

Author:

Wang Xueli1,Liu Wen,Xu Guoxiang,Zhu Jie,Hu Qingxian,Du Baoshuai

Affiliation:

1. Jiangsu University of Science and Technology

Abstract

Abstract The stirring effect of a rotating laser on a molten pool can expand the range of the laser heat source and effectively inhibit defects such as pores and improve the quality of the weld joint. Due to laser rotation, the physical characteristics of the heat source and the dynamic behavior of the keyhole and molten pool are more complicated than those of conventional laser welding. This paper adopts a numerical simulation method. A three-dimensional model is developed, which takes into account the coupling of the keyhole, recoil pressure and molten pool. The model can describe the dynamic behavior characteristics of keyholes and fluid flow and the formation process and mechanism of keyhole-induced pores in welds during rotating laser welding. It can be concluded that in conventional laser welding, the keyhole is deep, narrow and unstable, which usually results in the formation of bubbles. If the bubbles in the molten pool fail to overflow in time, pores are formed. With an increase in laser rotation frequency, the keyhole becomes shallow and wide, and the dynamic behavior of the keyhole tends to be stable, which can effectively inhibit the formation of pores. When the rotating frequency is increased up to 150 Hz, the formation of pores can be completely suppressed.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3