Intelligent Chronic Kidney Disease Diagnosis System using Cloud Centric Optimal Feature Subset Selection with Novel Data Classification Model

Author:

Arulanthu Pramila1,Perumal Eswaran1

Affiliation:

1. Alagappa University

Abstract

Abstract Internet of Things (IoT) and cloud computing offers diverse applications in the medicinal sector by the integration of sensing and therapeutic gadgets. Medical expenses are rising gradually and different new diseases also exist globally, it becomes essential to transform the healthcare facilities from a hospital to patient-centric platform. For providing effective remote healthcare services to patients, this paper introduces an optimal IoT and cloud based decision support system for Chronic Kidney Disease (CKD) diagnosis. The proposed method makes use of simulated annealing (SA) based feature selection (FS) with Root Mean Square Propagation (RMSProp) Optimizer based Logistic Regression (LR) model called SA-RMSPO-LR to classify the existence of CKD from medical data. The proposed model involves a set of four subprocesses, which include data collection, preprocessing, FS, and classification. The inclusion of SA for FS helps to improvise the classifier results of the SA-RMSPO-LR model. The effectiveness of the SA-RMSPO-LR model has been validated using a benchmark CKD dataset. The experimental results indicated that the proposed SA-RMSPO-LR model leads to effective CKD classification with the maximum sensitivity of 98.41%, specificity of 97.99%, accuracy of 98.25%, F-score of 98.60% and kappa value of 96.26%. The experimental outcome indicates that the proposed SA-RMSPO-LR model has the capability to detect and classify CKD over the compared methods proficiently.

Publisher

Research Square Platform LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3