Experimental Investigation of Emission and Performance Characteristics of CI Engine Fueled with Upgraded Microwave Pyrolysis Karanja Seed Bio-Oil

Author:

Anbu Mathiarasu1,Balakichenin Radjaram1,Muthaiyan Pugazhvadivu2,Sundaramoorthy Surendarnath3ORCID,Amesho Kassian T.T.4,Subramani Venkatesan5

Affiliation:

1. Manakula Vinayagar Institute of Technology

2. Puducherry Technological University

3. SVCET: Sri Venkateswara College of Engineering and Technology

4. National Sun Yat-sen University

5. Vellore Institute of Technology: VIT University

Abstract

Abstract The main objective of the present research work is to utilize the produced bio-oil from microwave pyrolysis of Karanja, a non-edible seed, as fuel for diesel engines by increasing some up-gradation in it the quality of the fuel. The emulsification process is carried out to improve the stability of the diesel-bio-oil blend using SPAN80 and TWEEN80, which lasted for 28 days without any layer separation termed as EKB20. The addition of 5% DEE and 10% DEE into EKB20 is done to enhance the combustion characteristics of the diesel engine. The produced bio-oil fuels were tested in a Kirloskar make, four-stroke, single-cylinder, direct injection diesel engine of 5.2 kW rated power output. The addition of DEE reduces the peak pressure by 4 bar and increases the heat release rate due to the higher volatility of DEE. At full load conditions, the thermal brake efficiency improved by 9.31% and 14.11%, respectively, compared to EKB20. Adding 5% DEE and 10% DEE at the rated power output reduced the smoke density by 18.42% and 60.25%, respectively, compared to EKB20 and 5% and 4% compared to diesel. The addition of 5% DEE and 10% DEE shows a 39% and 51% increase in NOX concentration and a 90% reduction in CO emission at the maximum brake power output. Hence, it is concluded that the fuels EKB20 + 5% DEE and EKB20 + 10% DEE can be used as alternative fuels for diesel engines.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3