Task-State Skin Potential Abnormalities Can Distinguish Major Depressive Disorder and Bipolar Depression from Healthy Controls

Author:

Hu Shaohua1ORCID,Lyu HailongORCID,Huang Huimin2,He Jiadong,Zhu Sheng,Hong Wanchu,Lai Jian-bo,Gao Tongsheng,Shao Jiamin,Zhu Jianfeng,Li Yubo

Affiliation:

1. The First Affiliated Hospital Zhejiang University School of Medicine

2. The First Affiliated Hospital, Zhejiang University School of Medicine

Abstract

Abstract Early detection of bipolar depression (BPD) and major depressive disorder (MDD) has been challenging due to the lack of reliable and easily measurable biological markers. This study aimed to investigate the accuracy of discriminating patients with mood disorders from healthy controls based on task state skin potential characteristics and their correlation with individual indicators of oxidative stress. A total of 77 patients with BPD, 53 patients with MDD, and 79 healthy controls were recruited. A custom-made device, previously shown to be sufficiently accurate, was used to collect skin potential data during six emotion-inducing tasks involving video, pictorial, or textual stimuli. Blood indicators reflecting individual levels of oxidative stress were collected. A discriminant model based on the support vector machine (SVM) algorithm was constructed for discriminant analysis. MDD and BPD patients were found to have abnormal skin potential characteristics on most tasks. The accuracy of the SVM model built with SP features to discriminate MDD patients from healthy controls was 78% (sensitivity 78%, specificity 82%). The SVM model gave an accuracy of 59% (sensitivity 59%, specificity 79%) in classifying BPD patients, MDD patients, and healthy controls into three groups. Significant correlations were also found between oxidative stress indicators in the blood of patients and certain SP features. Patients with depression and bipolar depression have abnormalities in task-state skin potential that partially reflect the pathological mechanism of the illness, and the abnormalities are potential biological markers of affective disorders.

Publisher

Research Square Platform LLC

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3