Affiliation:
1. The Ohio State University
2. Pukyong National University
3. Korea University
Abstract
Abstract
Background: Early life plays a vital role in the development of the gut microbiome and subsequent health. While many factors that shape the gut microbiome have been described, including delivery mode, breastfeeding, and antibiotic use, the role of household environments is still unclear. Furthermore, the development of the gut antimicrobial resistome and its role in health and disease is not well characterized, particularly in settings with water insecurity and less sanitation infrastructure.
Results: This study investigated the gut microbiomes and resistomes of infants and young children (ages 4 days-6 years) in rural Nicaragua using Oxford Nanopore Technology’s MinION long read sequencing. Differences in gut microbiome and resistome diversity and antibiotic resistance gene (ARG) abundance were examined for associations with host factors (age, sex, height for age z-score, weight for height z-score, delivery mode, breastfeeding habits) and household environmental factors (animals inside the home, coliforms in drinking water, enteric pathogens in household floors, fecal microbial source tracking markers in household floors). We identified the anticipated association of higher gut microbiome diversity with participant age. There were also positive correlations between ruminant and dog fecal contamination of household floors and gut microbiome diversity. However, greater abundances of potential pathogens were identified in the gut microbiomes of participants with higher fecal contamination on their household floors. Path analysis revealed that water quality and household floor contamination independently and significantly influenced gut microbiome diversity when controlling for age. These gut microbiomes contained diverse resistomes, dominated by multidrug, tetracycline, macrolide/lincosamide/streptogramin, and beta-lactam resistance. We found that the abundance of ARGs in the gut decreased with age. The bacterial hosts of ARGs were mainly from the family Enterobacteriaceae, particularly Escherichia coli.
Conclusions: This study identified the role of household environmental contamination in the developing gut microbiome and resistome of young children and infants with a One Health perspective. We found significant relationships between host age, gut microbiome diversity, and the resistome. Understanding the impact of the household environment on the development of the resistome and microbiome in early life is essential to optimize the relationship between environmental exposure and human health.
Publisher
Research Square Platform LLC