Household environment and animal fecal contamination are critical modifiers of the gut microbiome and resistome in young children from rural Nicaragua

Author:

Mills Molly1,Lee Seungjun2,Piperata Barbara A.1,Garabed Rebecca1,Choi Boseung3,Lee Jiyoung1

Affiliation:

1. The Ohio State University

2. Pukyong National University

3. Korea University

Abstract

Abstract Background: Early life plays a vital role in the development of the gut microbiome and subsequent health. While many factors that shape the gut microbiome have been described, including delivery mode, breastfeeding, and antibiotic use, the role of household environments is still unclear. Furthermore, the development of the gut antimicrobial resistome and its role in health and disease is not well characterized, particularly in settings with water insecurity and less sanitation infrastructure. Results: This study investigated the gut microbiomes and resistomes of infants and young children (ages 4 days-6 years) in rural Nicaragua using Oxford Nanopore Technology’s MinION long read sequencing. Differences in gut microbiome and resistome diversity and antibiotic resistance gene (ARG) abundance were examined for associations with host factors (age, sex, height for age z-score, weight for height z-score, delivery mode, breastfeeding habits) and household environmental factors (animals inside the home, coliforms in drinking water, enteric pathogens in household floors, fecal microbial source tracking markers in household floors). We identified the anticipated association of higher gut microbiome diversity with participant age. There were also positive correlations between ruminant and dog fecal contamination of household floors and gut microbiome diversity. However, greater abundances of potential pathogens were identified in the gut microbiomes of participants with higher fecal contamination on their household floors. Path analysis revealed that water quality and household floor contamination independently and significantly influenced gut microbiome diversity when controlling for age. These gut microbiomes contained diverse resistomes, dominated by multidrug, tetracycline, macrolide/lincosamide/streptogramin, and beta-lactam resistance. We found that the abundance of ARGs in the gut decreased with age. The bacterial hosts of ARGs were mainly from the family Enterobacteriaceae, particularly Escherichia coli. Conclusions: This study identified the role of household environmental contamination in the developing gut microbiome and resistome of young children and infants with a One Health perspective. We found significant relationships between host age, gut microbiome diversity, and the resistome. Understanding the impact of the household environment on the development of the resistome and microbiome in early life is essential to optimize the relationship between environmental exposure and human health.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3