A Machine Learning-based Diagnosis and Prediction of Diabetes Mellitus Disease

Author:

Thotad Puneeth N1ORCID

Affiliation:

1. KLE Institute of Technology

Abstract

Abstract Traditional diagnostic techniques are prone to human error and time consuming. Computer-aided diagnostic techniques improve the performance and reduce the expenses. This paper presents machine learning based classifiers to detect diabetes in India and Indian Demographic & Health Survey (2019–21) dataset is considered for the analysis. Classifiers like Support Vector Machine, Decision Tree, Extreme Gradient Boosting, and Random Forest are considered. Principal Component Analysis is used for feature reduction. Hyperparameters are tuned to achieve good performance of the classifiers. The four phases adopted in the work include preprocessing, feature extraction, classification, and analysis. From the results, the Random Forest has given the maximum classification accuracy, precision, recall, and area under the curve in comparison with other models. The work finds application in healthcare for predictive analysis of diabetes.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3