Development of an annotated Yoruba text corpus for automatic event extraction

Author:

Ademusire Adebisi Joseph1,Ninan Olufemi D.1

Affiliation:

1. Obafemi Awolowo University

Abstract

Abstract The study documents the development of an annotated Yoruba text corpus which serves as a fundamental reference for training and evaluating automatic event extraction models specifically designed for the Yoruba language. While notable corpora like ACE and ERE have been established for high-resource and extensively annotated languages, African languages such as Yoruba have faced limitations in information extraction due to the lack of annotated datasets for training and model evaluation. In this study, the researchers took the initiative to preprocess raw Yoruba text obtained from selected Yoruba folktale books, ensuring the correct placement of tone marks, and proceeded to annotate the data with events and their corresponding arguments, including temporal and spatial information, utilizing the widely recognized BIO annotation format. This meticulously developed corpus now fills a critical void and can serve as a solid foundation for any future research endeavours involving the Yoruba language in the domain of information extraction.

Publisher

Research Square Platform LLC

Reference38 articles.

1. Adegunlehin, E. A., Asahiah, F. O., & Onifade, M. T. (2019). Investigation of Feature Characteristics for Yoruba Named Entity Recognition System.

2. Akinade, G. (2016). Tákàdá: A text editor for the yorùbá language. [Online]. Available: https://sourceforge.net/projects/takada/.

3. A formal framework for linguistic annotation;Bird S;Speech communication,2001

4. Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: analyzing text with the natural language toolkit. "O'Reilly Media, Inc.".

5. Charbel Arnaud Cedrique, Y., Boco, Théophile, K., & Dagba (2022). An End to End Bilingual TTS System for Fongbe and Yoruba. Advances in Computational Collective Intelligence. Conference paper, December 9, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3