Identification of self- and pathogen-targeted miRNAs from resistant and susceptible Theobroma cacao variety to black pod disease

Author:

Septiani Popi1,Pramesti Yonadita1,Ningsih Devi Ulfa1,Pancaningtyas Sulistyani2,Meitha Karlia1

Affiliation:

1. Institut Teknologi Bandung

2. Indonesian Coffee and Cocoa Research Institute (ICCRI)

Abstract

Abstract Cacao (Theobroma cacao) is a highly valuable crop with growing demands in the global market. However, cacao farmers often face challenges posed by black pod disease caused by Phytophthora spp. with P. palmivora as the most dominant. Regulations of various gene expression influence plant resistance to pathogens. One mechanism involves targeting mRNA of virulence genes in the invading pathogens, suppressing their infection. However, resistance also could be suppressed by plant-derived miRNAs that target their own defense genes. The objective of this study is to identify differentially expressed miRNAs in black pod resistant and susceptible cacao varieties and to predict their targets in T. cacao and P. palmivora transcripts. In total, 54 known miRNAs from 40 miRNA families and 67 Novel miRNAs were identified. 17 miRNAs were differentially expressed in susceptible variety compared to resistant one, with 9 miRNAs were upregulated and 8 miRNAs downregulated. In T. cacao transcripts, the upregulated miRNAs were predicted to target several genes, including defense genes. The suppression of these defense genes can lead to a reduction in plant resistance against pathogen infection. While in P. palmivora transcripts, the upregulated miRNAs were predicted to target several genes, including P. palmivora effector genes. In the future, limiting expression of miRNAs that target T. cacao's defense genes and applying miRNAs that target P. palmivora effector genes hold promise for enhancing cacao plant resistance against P. palmivora infection.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3