Modification in the structural, optical, thermal, electrical, and dielectric properties of poly(methyl methacrylate)/poly(vinylidene fluoride) blend through the incorporation of Ni/ZnO nanohybrid for optoelectronic and energy storage devices

Author:

Rajeh A.1,Althobaiti Hanan A.2,Alsalmah Hessa A.3,Masmali N. A.4,Al-Sulami Ahlam I.5,Al-Ejji Maryam6

Affiliation:

1. Amran University

2. Taif University

3. Imam Mohammad Ibn Saud Islamic University (IMSIU)

4. Jazan University

5. University of Jeddah

6. Qatar University

Abstract

Abstract In order to produce suitable poly(methyl methacrylate)/poly(vinylidene fluoride) (PMMA/PVDF) films for optoelectronic and power storage uses, Ni-doped ZnO nanoparticles were added to PMMA/PVDF films. This was done in order to generate a synergistic interaction between the superior electrical characteristics of Ni and the remarkable optical characteristics of ZnO NPs. The production of Ni/ZnO in wurtzite hexagonal phase with a normal grain size of 19 nm was verified by the findings of the selected-area diffraction of electrons and X-ray diffraction techniques. By using FTIR measurements, the interaction of polymers with Ni/ZnO has been studied. The raising of the Ni/ZnO content steadily redshifted the optical band gap, although the Urbach energy demonstrated a contrary trend. With various nanoparticle concentrations, the differential scanning calorimetry (DSC) results revealed an enhancement in the temperature of melting of the PMMA/PVDF-Ni/ZnO nanocomposites films as well as an decrease in the level of crystallinity. At room temperature, an AC impedance study was carried out to check the electrical conductivity. All samples' ac conductivity spectra confirmed Jonscher's power law (JPL) behavior. The PMMA/PVDF-1.5%Ni/ZnO nanocomposites were discovered to have a greater ionic conductivity (σac) of 1.10 10− 5 S/cm at ambient temperature. Research on dielectric permittivity has additionally been carried out in order to comprehend the charge storage characteristics. The findings of the experiments showed that these PMMA/PVDF-Ni/ZnO films would provide excellent options for thermal insulators, cutting-edge microelectronics, capacitive storage of energy, optoelectronic technology and other applications.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3