Optimized Machine Learning Algorithms to predict wear behavior of Tribo- Informatics

Author:

Hulipalled Poornima1,Lokesha V1

Affiliation:

1. Vijayanagara Sri Krishnadevaraya University

Abstract

Abstract Wear rate prediction is most important in industrial applications. Machine learning (ML) has made an admirable contribution to the field of tribology. Standard ML models are extremely dependent on the parameter values; hence, tuning plays a crucial role in enhancing predictive performance. ML models largely work empirically, based on the data availability and application domain, the parameter tuning process effectively attains the desired accuracy of the models. The main aim of this study is to develop optimized ML models which render better accuracy than the previous study by using a grid search hyperparameter optimization technique. Five ML models namely Random Forest (RF), Support Vector Machine (SVM), K- Nearest Neighbor (KNN), Gaussian Process Regression (GPR), and Linear Regression (LR) are designed by tuning the parameters which lead to the optimization of models concerning the prediction accuracy.

Publisher

Research Square Platform LLC

Reference32 articles.

1. 1. Menezes PI, Nosonvsky M, Ingole SP, Kailas SV, Lovell MR, Tribology for scientists and engineers, NY: Springer; 2013.

2. 2. Kordijazi A, Roshan HM, Dhingra A, Povolo M, Rohatgi PK, Nosonvsky M, Machine-learning methods to predict the wetting properties of iron-based composites. Surf Innov 2021; 111-9.

3. 3. Amit K Gupta, Deep Narayan Mishra, An experimental investigation of the effect of carbon content on the wear behavior of plain carbon steel, IJSR 2013; 2(7): 222–224.

4. 4. Sharanabasappa M, VR Kabadi, Veerabhadrappa Algur, Some investigation on Dry Sliding Wear Behaviour of Ultra High Carbon Steel, Int Journ of Mech Engg Reser 2014; 4(1): 75–82.

5. 5. Ling Qiao, Jingchuan Zhu, YuanWang, Machine learning- Aided process design: modeling and prediction of transformation temperature for pearlitic steel, steel research international 2022; 93.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3