Towards circular plastics within planetary boundaries

Author:

Bardow André1ORCID,Bachmann Marvin2ORCID,Zibunas Christian2ORCID,Hartmann Jan2,Tulus Victor3ORCID,Suh Sangwon4ORCID,Guillén-Gosálbez Gonzalo3ORCID

Affiliation:

1. Energy & Process Systems Engineering, ETH Zurich

2. RWTH Aachen University

3. Swiss Federal Institute of Technology in Zurich

4. University of California, Santa Barbara

Abstract

Abstract The rapid growth of plastics production exacerbated the triple planetary crisis of habitat loss, waste pollution, and greenhouse gas (GHG) emissions. Circular strategies have been proposed for plastics to achieve net-zero GHG emissions. However, the implications of such circular strategies on absolute sustainability at planetary scale have not been examined. This study links a bottom-up model for the life cycle of 90% of global plastics to the planetary boundary framework. Here, we show that a climate-optimal plastics industry combining current recycling technologies with biomass and CO2 transgresses sustainability thresholds by up to four times. However, improving chemical recycling would open a safe operating space for sustainable plastics in 2030, provided that recycling rates reach at least 75%. The analysis also shows that sustainable plastics require not only novel technologies but also a fundamental change in our perception of plastics as cheap and disposable products.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3