Enformer: An encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records

Author:

Yang Zhichao1,Mitra Avijit1,Liu Weisong2,Berlowitz Dan2,Yu Hong2

Affiliation:

1. University of Massachusetts Amherst

2. University of Massachusetts Lowell

Abstract

Abstract Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present Enformer, a generative encoder-decoder model with transformer that was pretrained using a new pretraining objective - predicting all diseases and outcomes of a patient at a future visit from previous visits. Enformer’s encoder-decoder framework, paired with the novel pretraining objective, helped it achieve the new state-of-the-art (SOTA) performance on multiple clinical prediction tasks. Comparing with the previous SOTA model, Enformer improved area under the precision–recall curve (AUPRC) by 2% (p<0.001) for pancreatic cancer onset and by 24% (p<0.001) for intentional self-harm in patients with PTSD. The high performance in predicting intentional self-harm shows the potential of Enformer in building effective clinical intervention systems. Enformer is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3