Neuroprotective effects of CysLT2R antagonist on Angiostrongylus cantonensis-induced edema and meningoencephalitis

Author:

Chen Ke-Min1,Lai Shih-Chan1

Affiliation:

1. Chung Shan Medical University

Abstract

Abstract Background The pathogenesis of Angiostrongylus cantonensis-induced eosinophilic meningoencephalitis includes haemorrhage, brain edema formation, disrupting the blood–brain barrier (BBB), and induction of an inflammatory response. Cysteinyl leukotrienes (CysLTs) can induce a disruption of the BBB, and this reaction is mediated by cysteinyl-leukotriene receptors. In this study, we used A. cantonensis-induced eosinophilic meningoencephalitis as a model to investigate whether the CysLT2 receptor involved in the pathogenesis of angiostrongyliasis meningoencephalitis. Methods The brain edema was determined using the wet weight/dry weight method. Microglia polarization was detected by Flow cytometry and Enzyme-linked immunosorbent assay. Evans blue method was used to measure changes in the blood brain barrier, while western blotting was used to analyze BBB-related proteins. Gelatin zymography was used to assay matrix metalloproteinase-9 (MMP-9). MicroRNA expression was detected by Quantitative reverse transcription-PCR (qRT-PCR). Results The present study provides evidence that the CysLT2 receptor antagonist HAMI3379 reduced the number of infiltrated eosinophils and brain edema in eosinophilic meningoencephalitis. Additionally, we found that HAMI3379 significantly decreased the protein levels of M1 polarisation markers (CD80, iNOS, IL-5 and TNF-α), increased the expression of M2 polarisation markers (CD206, IL-10 and TGF-β) both in vivo and in vitro. Matrix metalloproteinase-9, S100B, GFAP, fibronectin, and claudin-5 were markedly lower after HAMI3379 treatment. Therefore, HAMI3379 reduced the BBB dysfunction in angiostrongyliasis meningoencephalitis. We have identified microRNA-155 as a BBB dysfunction marker in eosinophilic meningoencephalitis. The results showed that microRNA-155 was 15-fold upregulated in eosinophilic meningoencephalitis and 20-fold upregulated after HAMI3379 treatment. Conclusions Our results suggest that CysLT2R may be involved in A. cantonensis-induced brain edema and eosinophilic meningoencephalitis and that down-regulation of CysLT2R could be a novel and potential therapeutic strategy for the treatment of angiostrongyliasis meningoencephalitis.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3