Research on Intelligent Recognition Technology in Lithology Based on Multi-parameter Fusion

Author:

Liang Haibo1,Xiong Jiaguo1,Yang Yi1,Zou Jialing1

Affiliation:

1. SWPU: Southwest Petroleum University

Abstract

Abstract In oil and gas drilling, timely and accurate identification of formation lithology is an important factor in drilling safety. In response to the problems of inaccuracy and low efficiency of complex lithology identification by traditional methods such as elemental crossplot in drilling and logging, the Categorical Boost (CatBoost) model is applied to lithology identification in this study. However, since CatBoost uses more hyperparameters in its modeling, it is difficult to optimize model prediction by manually tuning the parameters. Therefore, the introduction of Kernel Principal Component Analysis (KPCA) extracts fewer and more important features from the original data, eliminates the redundant information contained therein, and combines with Bayesian Optimization (BO) algorithm to optimize the hyperparameters during the training process, thus improving the prediction performance of CatBoost. Two experiments were designed to verify the recognition ability of the model, and the final test results of the model showed that the KPCA-BO-CatBoost model proposed in this study had the best comprehensive performance, and the lithology recognition accuracy reached over 90%. The model is effective in identifying formation lithology, improving the efficiency and accuracy of lithology identification and providing important guidance for subsequent drilling operations.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3