Prediction of Subsolid Pulmonary Nodule Growth Rate Using Radiomics

Author:

Ma Zong jing1,Ma Zhuang Xuan1,Sun Ying1,Li De Chun1,Jin Liang1,Gao Pan1,Li Cheng1,Li Ming1

Affiliation:

1. Huadong Hospital

Abstract

Abstract BACKGROUND Pulmonary nodule growth rate assessment is critical in the management of subsolid pulmonary nodules (SSNs) during clinical follow-up. The present study aimed to develop a model to predict the growth rate of SSNs.METHODS A total of 273 growing SSNs with clinical information and 857 computed tomography (CT) scans were retrospectively analyzed. The images were randomly divided into training and validation sets. All images were categorized into fast-growth (volume doubling time (VDT) ≤ 400 days) and slow-growth (VDT > 400 days) groups. Models for predicting the growth rate of SSNs were developed using radiomics and clinical features. The models’ performance was evaluated using the area under the curve (AUC) values for the receiver operating characteristic curve.RESULTS The fast- and slow-growth groups included 108 and 749 scans, respectively, and 10 radiomics features and three radiographic features (nodule density, presence of spiculation, and presence of vascular changes) were selected to predict the growth rate of SSNs. The nomogram integrating radiomics and radiographic features (AUC = 0.928 and AUC = 0.905, respectively) performed better than the radiographic (AUC = 0.668 and AUC = 0.689, respectively) and radiomics (AUC = 0.888 and AUC = 0.816, respectively) models alone in both the training and validation sets.CONCLUSION The nomogram model developed by combining radiomics with radiographic features can predict the growth rate of SSNs more accurately than traditional radiographic models. It can also optimize clinical treatment decisions for patients with SSNs and improve their long-term management.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3