Cost-Effective Deep Learning Model for Seizure Detection from One Channel: Channel-Independent Classifier.

Author:

Benchikh Abdelhafid1ORCID,Benali Radhwane1ORCID

Affiliation:

1. Biomedical Engineering Laboratory, Faculty of Technology, Abou Bekr Belkaid University, Tlemcen, 13048, Algeria

Abstract

Abstract

Accurate and efficient seizure detection in epilepsy patients is a critical goal for improving their quality of life. In this study, our primary objective was to explore the feasibility of reducing the number of EEG channels required for reliable seizure detection. We accomplished this by training and verifying our model exclusively on data from the first channel of the Children's Hospital Boston dataset (CHB-MIT). Our model consistently achieved accuracies ranging from 89–99.52% across all 23 channels, demonstrating the potential for accurate seizure detection using data from a single channel. This highlights the potential for cost-effective headsets for seizure onset detection solutions in the future, which could greatly benefit individuals living with epilepsy.

Publisher

Research Square Platform LLC

Reference7 articles.

1. WHO W, Epilepsy (2022) Epilepsy. Accessed: Sep. 16, [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/epilepsy

2. Cimr D, Fujita H, Tomaskova H, Cimler R, Selamat A (2023) Automatic seizure detection by convolutional neural networks with computational complexity analysis, Computer Methods and Programs in Biomedicine, vol. 229, p. 107277, Feb

3. Kaur A, Shashvat K (2022) Implementation of convolution neural network using scalogram for identification of epileptic activity, Chaos, Solitons & Fractals, vol. 162, p. 112528, Sep

4. Chirasani SKR, Manikandan S (2022) A deep neural network for the classification of epileptic seizures using hierarchical attention mechanism, Soft Comput, vol. 26, no. 11, pp. 5389–5397, Jun

5. Automated seizure detection using limited-channel EEG and non-linear dimension reduction;Birjandtalab J;Comput Biol Med

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3