Sentiment Analyis and Bitcoin Price Prediction

Author:

BAMIDELE TOYOSI1

Affiliation:

1. Texas Tech University

Abstract

Abstract The emergence of Bitcoin as a decentralized digital currency has underscored the importance of developing advanced techniques for predicting its price fluctuations. This study evaluates the predictive power of Bitcoin-related Google search volumes and Twitter sentiment analysis within short time frames. By leveraging machine learning algorithms and opinion mining, we identify correlations between online behaviors and Bitcoin price movements. Our methodology encompasses data sourcing, preprocessing, exploratory analysis, feature selection using Correlation Analysis, F-regression, Shapley values, and price prediction with a Long Short-Term Memory (LSTM) model. Findings reveal that Google search data, compared to Twitter sentiment, significantly enhances model accuracy and reduces prediction errors. The study suggests future research to investigate other search engines and online news sentiment, acknowledging limitations in data quality and accessibility of historical Twitter data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3