Harnessing the Power of Hugging Face Transformers for Predicting Mental Health Disorders in Social Networks

Author:

Pourkeyvan Alireza1,Safa Ramin1,Sorourkhah Ali1

Affiliation:

1. Ayandegan Institute of Higher Education

Abstract

Abstract Early diagnosis of mental disorders and intervention can facilitate the prevention of severe injuries and the improvement of treatment results. Using social media and pre-trained language models, this study explores how user-generated data can be used to predict mental disorder symptoms. Our study compares four different BERT models of Hugging Face with standard machine learning techniques used in automatic depression diagnosis in recent literature. The results show that new models outperform the previous approach with an accuracy rate of up to 97%. Analyzing the results while complementing past findings, we find that even tiny amounts of data (Like users’ bio descriptions) have the potential to predict mental disorders. We conclude that social media data is an excellent source of mental health screening, and pre-trained models can effectively automate this critical task.

Publisher

Research Square Platform LLC

Reference40 articles.

1. “No health without mental health;Prince M;Lancet,2007

2. W. H. Organization, “Depression and other common mental disorders: global health estimates,” World Health Organization, 2017.

3. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review;Renaud-Charest O;J. Psychiatr. Res.,2021

4. K. Zeberga, M. Attique, B. Shah, F. Ali, Y. Z. Jembre, and T.-S. Chung, “A novel text mining approach for mental health prediction using Bi-LSTM and BERT model,” Comput. Intell. Neurosci., vol. 2022, 2022.

5. Statista, “Reasons for US users to follow brands on Twitter as of September 2019.” 2019. [Online]. Available: https://www.statista.com/statistics/276393/reasons-for-us-users-to-follow-brands-on-twitter/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI Based FIR Filing System;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-18

2. FSRD: few-shot fuzzy rumor detection system with stance-enhanced prompt learning;Soft Computing;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3