Optimized Schwarz Domain Decomposition Algorithms for the Closest Point Method on Closed Manifolds

Author:

Yazdani Alireza1,Haynes Ronald D.2,Ruuth Steven J.3

Affiliation:

1. University of British Columbia

2. Memorial University of Newfoundland

3. Simon Fraser University

Abstract

Abstract The closest point method (CPM) is an embedding method that represents surfaces using a function that maps points in a neighbourhood of the surface to their closest points on the surface. This mapping brings intrinsic data onto the embedding space, allowing us to numerically approximate surface intrinsic partial differential equations by standard numerical methods in a tubular neighbourhood of the surface. Solving the surface positive Helmholtz equation by the CPM paired with finite differences yields a large, sparse, and non-symmetric linear system. Here Schwarz domain decomposition methods (DDMs) provide partitioned, parallel algorithms to solve these linear systems. We theoretically investigate the convergence of optimized Schwarz-CPM methods for 1-manifolds in Rd. The analysis is followed by numerical experiments for verification. AMS Classification: 65N25 , 65N55

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3