Hypermethylation suppresses microRNA-219a-2 to activate the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis

Author:

Xiao Xiao1,Huo Emily2,Guo Chunyuan3,Zhou Xiangjun4,Hu Xiaoru5,Dong Charles6,Shi Huidong6ORCID,Dong Zheng6ORCID,Wei Qingqing7ORCID

Affiliation:

1. Zhongnan Hospital of Wuhan University

2. Augusta Preparatory Day School

3. Shanghai Skin Disease Hospital, Tongji University School of Medicine

4. Renmin Hospital of Wuhan University

5. The Second Xiangya Hospital at Central South University

6. Augusta University

7. Augusta University/Medical College of Georgia

Abstract

Abstract Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA-219a-2 (mir-219a-2) by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyro-sequencing, we detected the hypermethylation of mir-219a-2 in renal fibrosis induced by unilateral ureter obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in mir-219a-5p expression. Functionally, overexpression of mir-219a-2 enhanced fibronectin induction during hypoxia or TGF-β1 treatment of cultured renal cells. In mice, inhibition of mir-219a-5p suppressed fibronectin accumulation in UUO kidneys. ALDH1L2 was identified to be the direct target gene of mir-219a-5p in renal fibrosis. Mir-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of mir-219a-5p prevented the decrease of ALDH1L2 in UUO kidneys. Knockdown of ALDH1L2 enhanced PAI-1 induction during TGF-β1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of mir-219a-2 in response to fibrotic stress attenuates mir-219a-5p expression and induces the up-regulation of its target gene ALDH1L2, which may reduce fibronectin deposition by suppressing PAI-1.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3