Investigation on residual stress formation mechanism considering cutting energy in milling of aluminum alloy

Author:

Zheng Youyi,Yuzhao Tian1,Ma Junjin,Zhang FapingORCID,Cui Xiaobin,Ren Lei

Affiliation:

1. Henan Polytechnic University

Abstract

Abstract Aluminum alloy has the characteristics of good corrosion resistance and high strength, so aluminum alloy workpiece is widely used in the aerospace field. However, in milling, the surface of the aluminum alloy workpiece generates residual stress due to the coupling of force and heat, which seriously affects the fatigue performance of the workpiece. To investigate the residual stress formation mechanism, an analyzed model of machining-induced residual stress considering energy conversion in milling process was proposed. In this process, the milling force prediction model is established. Then, an effective cutting work model is established based on the milling force model. After that, the strain energy density of the machined surface layer was analyzed and the strain energy solution model was established. Subsequently, the prediction models of mechanical stress, thermal stress and residual stress are established respectively, and the residual stress data are brought into the strain energy model to obtain the strain energy. Afterwards, the functional transformation relationship between effective cutting work and strain energy storage per unit time is analyzed. Finally, several milling experiments were carried out to verify the predicted milling force and residual stress. Experimental results show that errors between the predicted results and the experimental results are about 5 % and 15 %, respectively, and the functional transformation results show that the stored strain energy per unit time increases with the increase of the effective cutting work.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3