The Effect of Dichotomization of Skewed Adjustment Covariates in the Analysis of Clinical Trials

Author:

Herschtal Alan1

Affiliation:

1. Monash University

Abstract

Abstract Baseline imbalance in covariates associated with the primary outcome in clinical trials leads to bias in the reporting of results. Standard practice is to mitigate that bias by stratifying by those covariates in the randomization. Additionally, for continuously valued outcome variables, precision of estimates can be (and should be) improved by controlling for those covariates in analysis. Continuously valued covariates are commonly thresholded for the purpose of performing stratified randomization, with participants being allocated to arms such that balance between arms is achieved within each stratum. Often the thresholding consists of a simple dichotomization. For simplicity, it is also common practice to dichotomize the covariate when controlling for it at the analysis stage. This latter dichotomization is unnecessary, and has been shown in the literature to result in a loss of precision when compared with controlling for the covariate in its raw, continuous form. Analytic approaches to quantifying the magnitude of the loss of precision are generally confined to the most convenient case of a normally distributed covariate. This work generalises earlier findings, examining the effect on treatment effect estimation of dichotomizing skew-normal covariates, which are characteristic of a far wider range of real-world scenarios than their normal equivalents.

Publisher

Research Square Platform LLC

Reference34 articles.

1. Improper analysis of trials randomised using stratified blocks or minimisation;Kahan BC;Statistics in Medicine,2012

2. How to select covariates to include in the analysis of a clinical trial;Raab GM;Controlled Clinical Trials,2000

3. Altman DG. Covariate Imbalance, Adjustment for. Encyclopedia of Biostatistics. 2005.

4. Covariate imbalance and random allocation in clinical trials;Senn SJ;Statistics in Medicine,1989

5. U.S. Department of Health and Human Services Food and Drug Administration, Adjusting for Covariates in Randomized Clinical Trials for Drugs and Biological Products. 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3