Glutathione-depleting liposome adjuvant for augmenting the efficacy of a Glutathione covalent inhibitor oridonin for acute myeloid leukemia therapy

Author:

Liu Yi1,Wang Xiaoning1,Feng Hui1,Li Xinyan1,Yang Runyu1,Zhang Mengyao1,Du Yue1,Liu Ruimin1,Luo Minna1,Li Zhiyi1,Liu Bo1,Wang Jincheng1,Wang Wenjuan1,An Feifei2,Niu Fan1,He Pengcheng1

Affiliation:

1. The First Affiliated Hospital of Xi’an Jiaotong University

2. Xi'an Jiaotong University

Abstract

Abstract Background Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. Methods We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. ResultsWe demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. ConclusionsThe rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.

Publisher

Research Square Platform LLC

Reference46 articles.

1. Targeting apoptosis in cancer therapy;Carneiro BA;Nat Rev Clin Oncol,2020

2. Oxidative stress and cancer: an overview;Sosa V;Ageing Res Rev,2013

3. Ros in cancer therapy: the bright side of the moon;Perillo B;Exp Mol Med,2020

4. Photosensitizers for photodynamic therapy;Lan M;Adv Healthc Mater,2019

5. Redox regulation in cancer cells during metastasis;Tasdogan A;Cancer Discov,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3