An exhaustive evaluation of modeling ecological niches above species level to predict marine biological invasions

Author:

Reyes Kevin Alejandro Lopez1ORCID,Olvera Luis Osorio2,Soto Octavio Rojas3,Chiappa-Carrara Xavier4,Rivero Carlos Patrón1,Arenas Carlos Yáñez1

Affiliation:

1. Universidad Nacional Autónoma de México Facultad de Ciencias: Universidad Nacional Autonoma de Mexico Facultad de Ciencias

2. Universidad Nacional Autónoma de México: Universidad Nacional Autonoma de Mexico

3. INECOL: Instituto de Ecologia

4. Escuela Nacional de Estudios Superiores Unidad Mérida: Universidad Nacional Autonoma de Mexico Escuela Nacional de Estudios Superiores Unidad Merida

Abstract

Abstract Identifying the areas of the world with suitable environmental conditions for the establishment of invasive species represents a fundamental basis for preventing their impacts. One of the most widely used tools for this is ecological niche modeling. Nonetheless, this approach may underestimate the specie’s physiological tolerances since wildlife populations of species usually do not occupy their entire environmental tolerance. Recently, it has been suggested that incorporating occurrences of phylogenetically related species improves the prediction of biological invasions. However, the reproducibility of this technique is unclear. Here, we evaluated the generality of this protocol by assessing whether the construction of modeling units above species level improves the capacity of niche models to predict the distribution of 26 target marine invasive species. For each, we constructed supraspecific modeling units based on published phylogenies by grouping the native occurrence records of each invasive species with the records of its phylogenetically closest relative. We also considered units at the species level, including only the presence of records in the native areas of the target species. We generated ecological niche models for each unit with two methods (minimum volume ellipsoids – MVE and machine learning algorithms – Maxent). In addition, we grouped the 26 target species based on whether or not their niches are unfilled. Our results suggest that the construction of supraspecific units improves the predictive capacity of correlative models to estimate the invasion area of our target species. However, this modeling approach consistently generated models with the higher predictive ability for species with unfilled niches.

Publisher

Research Square Platform LLC

Reference70 articles.

1. RGL – 3D visualization device system for R using OpenGL;Adler D,2018

2. Separate histories in both sides of the Mediterranean: phylogeny and niche evolution of ocellated lizards;Ahmadzadeh F;J Biogeogr,2016

3. Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao E, De clerck O (2017) Global Ecol Biogeogr 27(3):277–284. https://doi.org/10.1111/geb.12693. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling

4. Phylogeny of nereidids (Polychaeta, Nereididae) with paragnaths;Bakken T;Zoolog Scr,2005

5. Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea);Barros R;Aquat Invasions,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3