Reliability of respiratory-gated real-time two-dimensional cine incorporating deep learning reconstruction for the assessment of ventricular function in an adult population

Author:

Orii Makoto1,Sone Misato1,Osaki Takeshi1,Kikuchi Kei1,Sugawara Tsuyoshi1,Zhu Xucheng2,Janich Martin A.2,Nozaki Atsushi2,Yoshioka Kunihiro1

Affiliation:

1. Iwate Medical University

2. GE Healthcare

Abstract

Abstract This study aimed to assess the image quality and accuracy of respiratory-gated real-time two-dimensional (2D) cine incorporating deep learning reconstruction (DLR) for the quantification of biventricular volumes and function compared with those of the standard reference, that is, breath-hold 2D balanced steady-state free precession (bSSFP) cine, in an adult population. Twenty-four patients (15 men, mean age 50.7 ± 16.5 years) underwent cardiac magnetic resonance for clinical indications, and 2D DLR and bSSFP cine were acquired on the short-axis view. The image quality scores were based on three main criteria: blood-to-myocardial contrast, endocardial edge delineation, and presence of motion artifacts throughout the cardiac cycle. Biventricular end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular mass (LVM) were analyzed. The 2D DLR cine had significantly shorter scan time than bSSFP (41.0 ± 11.3 s vs. 327.6 ± 65.8 s; p < 0.0001). Despite an analysis of endocardial edge definition and motion artifacts showed significant impairment using DLR cine compared with bSSFP (p < 0.01), the two sequences demonstrated no significant difference in terms of biventricular EDV, ESV, SV, and EF (p > 0.05). Moreover, the linear regression yielded good agreement between the two techniques (r ≥ 0.76). However, the LVM was underestimated for DLR cine (109.8 ± 34.6 g) compared with that for bSSFP (116.2 ± 40.2 g; p = 0.0291). Respiratory-gated 2D DLR cine is a reliable technique that could be used in the evaluation of biventricular volumes and function in an adult population.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3