Characterization and abatement of SOx, NOx and PCDD/Fs in iron ore sinter machine wind legs

Author:

Angalakuditi Veera Brahmacharyulu1ORCID,Gujare Ramarao1,Anbarasu Ramados1,Gandikoti Thimmappa1,Raydurg Srinivas Rao1,Singh Lokendra Raj1,Baral Saroj Sundar2

Affiliation:

1. JSW Steel Ltd

2. Birla Institute of Technology and Science - Goa Campus

Abstract

Abstract It was observed that SOx and NOx, in large concentrations, are getting released from certain wind boxes below the sinter machine. The particulates released from specific wind legs were characterized using Quantitative Evaluation of Materials by Scanning Electron Microscopy (QEMSCAN). Particulates with spherical, cubical, needle and bar-like morphologies containing K, Na, Cl were found. Nitrogen-based solids were found in clutter-like morphology. Some particles had a mixture of the above, SOx and NOx. A method of dissolving SOx, NOx and breaking them down into harmless substances was explored in this research. The deposits in the wind legs were dissolved in demineralized water and solutions of sodium bicarbonate, urea, and di-sodium borate deca-hydrate (borax) to estimate the absorbance of K, Na, Cl, Ca, Mg, S, and N based compounds present. Demineralized water and sodium bicarbonate were found to be the most effective sorbents of SOx and NOx. The filtrates were examined under QEMSCAN and found that SOx and NOx are not present. Based on the above finding, a solution of sodium bicarbonate and water 0.01% v/v was sprayed into a wind box and found that SOx and NOx have got reduced by about 55%. To maximize the capture of SOx and NOx, the solution was optimized at 0.02% v/v. With this novel technique, capital intensive Desulphurization (De-SOx) and Denitrification (De-NOx) installation can be avoided. Additionally, an economical solution to the Polychlorinated dibenzo para-dioxins and polychlorinated dibenzofurans (PCDD/Fs) emission was explored in this research. Various physicochemical mechanisms of forming harmful substances are described in this paper.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3