Semantic Segmentation Algorithm for Autonomous Driving using UNET Architectures: A Comparative Study

Author:

Subhedar Javed1,Bachute Mrinal1,Koundal Deepika2,Kotecha Ketan3

Affiliation:

1. Symbiosis International University

2. University of Petroleum and Energy Studies, Dehradun, India

3. Symbiosis Centre for Applied Artificial Intelligence,

Abstract

Abstract In autonomous driving systems, the semantic segmentation task involves scene partition into numerous expressive portions by classifying and labeling every image pixel for semantics. The algorithm used for semantic-segmentation has a vital role in autonomous driving architecture. The main contribution of this paper is the design of UNET architecture for the semantic-segmentation algorithm of autonomous driving. We address semantic image segmentation by the images captured using the open-source Car Learning to Act (CARLA) simulator platform for this research work. Semantic segmentation processes images from the camera obtained from the simulated vehicle for classification into multiple classes, including roads, cars, bikes, lanes, bicycles, trees, sky, etc. This study is intended to capture the merits of the U-NET semantic segmentation Algorithms for autonomous driving using the Keras framework. The proposed algorithm was evaluated on a dataset generated using CARLA simulation software and the CAMViD dataset for different metrics.

Publisher

Research Square Platform LLC

Reference29 articles.

1. Carla "CARLA, Simulator," (2020) Website, http://carla.org/ (accessed Jul. 04, 2021)

2. Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) "CARLA: An Open Urban Driving Simulator," no. CoRL, pp. 1–16, [Online]. Available: http://arxiv.org/abs/1711.03938

3. End-to-End Driving Via Conditional Imitation Learning;Codevilla F;Proc IEEE Int Conf Robot Autom,2018

4. Autonomous driving in roundabout maneuvers using reinforcement learning with q-learning;Cuenca LG;Electron (Switzerland),2019

5. Conditional vehicle trajectories prediction in carla urban environment;Buhet T;Proc – 2019 Int Conf Comput Vis Workshop ICCVW 2019,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3