HiPIMS prepared ultrathin gold film for plasmonic biosensor application

Author:

Huang Sheng-Yang1,Hsieh Ping-Yen1,Chung Chi-Jen2,Chou Chia-Man3,He Ju-Liang1

Affiliation:

1. Feng Chia University

2. Central Taiwan University of Science and Technology

3. Taichung Veterans General Hospital

Abstract

Abstract The global pandemic of coronavirus disease 2019 (COVID-19) has come to a different stage worldwide. Until now, the common flu-like outbreaks have led to increasing demand for screening tests with high sensitivity and specificity. Among biosensors, the noble metal nano-optical sensor based on localized surface plasmon resonance (LSPR) has great potential due to its simple design, feasible manufacturing, and fast response. To develop an efficient and economic examination, this study utilizes high power impulse magnetron sputtering (HiPIMS) to prepare ultrathin gold film (UTGF) on glass substrate. The experimental results show that with an increase in the deposition time from 3 s to 144 s, the UTGF forms from an island-like morphology, a network structure, to ultimately a smooth UTGF layer on glass. When the UTGF sample is conjugated with human serum albumin (HSA) at 5×10− 4 M as a pretest analyte, a significant peak shift of 25.6 nm was detected for the UTGF deposited at 12 s. Based on the UV-Vis measurement, the plasmonic loss peak of the UTGF sample with deposition times of 6 s, 12 s, and 24 s are 537.1 nm, 601.9 nm, and 665.8 nm, respectively, whereas the deposition time of 12 s prepared UTGF sample revealed the strongest LSPR effect. With a prolonged deposition time over the percolation time (48 s), those UTGF samples gave no LSPR response. To further detect viral antigen, recombinant severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein, the UTGF were functionalized with mouse anti-human immunoglobulin G (IgG). The HiPIMS prepared UTGF sample feasible for SARS-CoV-2 detection is demonstrated, giving potential application on rapid and ultrasensitive biomolecules sensor.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3