Investigation of Work Coordinate System Setting in Ultra-Precision Machining Using Electrical Breakdown for Non-Conductive Materials

Author:

Lowery Zach,Maeng Sangjin,Min Sangkee1ORCID

Affiliation:

1. University of Wisconsin Madison College of Engineering

Abstract

Abstract The ultra-precision machine tool industry has been consistently improving to the point where machine tools with extreme thermal controls, vibration damping, and command resolutions of 0.1 nm are commercially available. As little research focus has been given to developing peripheral technologies, currently available work coordinate system setting methods are a bottleneck on the achievable accuracy of ultra-precision machine tools. One of the work coordinate system setting methods uses electrical breakdown. The electrical phenomenon occurs when a sufficiently large voltage difference is applied between two conductors. This phenomenon has been observed to have a linear relationship between the breakdown voltage and gap length at short gap lengths. Electrical breakdown is a capable work coordinate system setting with an accuracy of 100s nm. However, this method is limited to electrically conductive cutting tools and workpiece materials. This study proposes a work coordinate system setting method for ultra-precision machining based on electrical breakdown for non-conductive materials. In this study, a conductive thin film coating is applied to polycrystalline diamond cutting tools to facilitate electrical breakdown work coordinate system setting. With similar motivation, a modification method was tested to enable electrical breakdown work coordinate system setting on non-conductive workpiece materials. The modification method used a 50 nm thick platinum coating on the workpiece. This study also introduces a method for automatic work coordinate system setting using electrical breakdown and sensors built into the machine tool.

Publisher

Research Square Platform LLC

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3