Affiliation:
1. The University of Queensland
Abstract
Abstract
Disturbance-induced rubble accumulations are described as “killing fields” on coral reefs as coral recruits suffer high post-settlement mortality, creating a bottleneck for reef recovery. The increasing frequency of coral bleaching events, that can generate rubble once coral dies, has heightened concerns that rubble beds will become more widespread and persistent. But we currently lack the tools to predict where rubble is most likely to accumulate. Here, we developed a modelling framework to identify areas that are likely to accumulate rubble across the Great Barrier Reef. The algorithm uses new high-resolution bathymetric and geomorphic datasets from satellite remote sensing. We found that 47 km of reef slope (3% of the entire reef), primarily in the southern region, could potentially reach 50% rubble cover. Despite being statistically significant (p < 0.001), the effects of depth and aspect on rubble cover were minimal, with a 0.2% difference in rubble cover between deeper and shallower regions, as well as a maximum difference of 0.8% among slopes facing various directions. Therefore, we conclude that the effects of depth and aspect were insufficient to influence ecological processes such as larval recruitment and recovery in different coral communities. Maps of potential rubble accumulation can be used to prioritise surveys and potential restoration, particularly after major disturbances have occurred.
Publisher
Research Square Platform LLC