Affiliation:
1. Jiangsu University of Technology
Abstract
Abstract
Network security is subject to malicious attacks from multiple sources, and intrusion detection systems (IDS) play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposed a network intrusion detection algorithm based on enhanced random forest and Synthetic Minority Over-Sampling Technique (SMOTE) algorithm. Firstly, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced data set, by which the sample features of minor samples could be learned more effectively. Secondly, preliminary prediction result was obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by the analysis of the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection.
Publisher
Research Square Platform LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献