Visualization and Analysis of the Curvature Invariants in the Alcubierre Warp-Drive Spacetime

Author:

Rodal Jose

Abstract

Abstract In the Alcubierre warp-drive spacetime, we investigate the following scalar curvature invariants: the scalar I, derived from a quadratic contraction of the Weyl tensor, the trace R of the Ricci tensor, and the quadratic r1 and cubic r2 invariants from the trace-adjusted Ricci tensor. In four-dimensional spacetime the trace-adjusted Einstein and Ricci tensors are identical, and their unadjusted traces are oppositely signed yet equal in absolute value. This allows us to express these Ricci invariants using Einstein’s curvature tensor, facilitating a direct interpretation of the energy-momentum tensor. We present detailed plots illustrating the distribution of these invariants. Our findings underscore the requirement for four distinct layers of an anisotropic stress-energy tensor to create the warp bubble. Additionally, we delve into the Kretschmann quadratic invariant decomposition. We provide a critical analysis of the work by Mattingly et al., particularly their underrepresentation of curvature invariants in their plots by 8 to 16 orders of magnitude. A comparison is made between the spacetime curvature of the Alcubierre warp-drive and that of a Schwarzschild black hole with a mass equivalent to the planet Saturn. The paper addresses potential misconceptions about the Alcubierre warp-drive due to inaccuracies in representing spacetime curvature changes and clarifies the classification of the Alcubierre spacetime, emphasizing its distinction from class B warped product spacetimes.

Publisher

Research Square Platform LLC

Reference41 articles.

1. {Carminati}, J. and {McLenaghan}, R. G. (1991) {Algebraic invariants of the {Riemann} tensor in a four-dimensional Lorentzian space}. Journal of Mathematical Physics 32(11): 3135-3140 https://doi.org/10.1063/1.529470, Provided by the SAO/NASA Astrophysics Data System, https://ui.adsabs.harvard.edu/abs/1991JMP....32.3135C, November

2. Cherubini, Christian and Bini, Donato and Capozziello, Salvatore and Ruffini, Remo (2002) Second order scalar invariants of the {Riemann} tensor: applications to black hole spacetimes. International Journal of Modern Physics D 11(06): 827-841 https://doi.org/10.1142/S0218271802002037, gr-qc, arXiv, gr-qc/0302095, https://doi.org/10.1142/S0218271802002037

3. Kevin Santosuosso and Denis Pollney and Nicos Pelavas and Peter Musgrave and Kayll Lake (1998) Invariants of the {Riemann} tensor for class {B} warped product space-times. Computer Physics Communications 115(2): 381-394 https://doi.org/https://doi.org/10.1016/S0010-4655(98)00134-9, gr-qc, arXiv, gr-qc/9809012, Invariants, Syzygies, Singularities, Computer algebra, https://www.sciencedirect.com/science/article/pii/S0010465598001349, 0010-4655

4. MacCallum, Malcolm A. H. (2015) Spacetime invariants and their uses. 4, gr-qc, arXiv, 1504.06857

5. Miguel Alcubierre (1994) The warp drive: hyper-fast travel within general relativity. Classical and Quantum Gravity 11(5): L73 https://doi.org/10.1088/0264-9381/11/5/001, gr-qc, arXiv, gr-qc/0009013, IOP Publishing, may, https://dx.doi.org/10.1088/0264-9381/11/5/001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3